INTRODUCTION:

Pulsed electromagnetic fields (PEMFs) have been used widely to treat non-healing fractures and related problems in bone healing since approval by the Food and Drug Administration (FDA) in 1979, with a success rate averaging 70-80% in a wide variety of centers in several countries. A special pulsed magnetic field configuration is used for Pulsed Signal Therapy® (PST) lost their pains and showed less osteoarthritic symptoms.

To determine the biological effects of PST on cartilage physiology we used a three-dimensional chondrocyte culture as an in vitro model for articular cartilage. Isolated chondrocytes of articular cartilage proliferate in monolayer culture. In three-dimensional culture cells redifferentiate again shown by the deposition of cartilage-specific matrix components like collagen type II. Using this cartilage model chondrocytes from different patients were pooled to minimize variability between individual patients.

RESULTS:

Histological staining showed production of proteoglycan and collagen. The MTT-test confirmed the cell vitality. Microscopically, at day 9 and 6 months after treatment with PST, chondrocyte pellets appeared to be larger in size compared to chondrocytes not treated with PST. Referring to the amount of hydroxyproline (HPLC), chondrocyte pellets treated with PST showed an increased matrix synthesis of collagen.

Discussion:

The objective of our study was to investigate the role of PST on cartilage matrix formation of adult human articular and meniscal cartilage. As a hypothesis, PST treatment results in an electromagnetic pulsing field, which may stimulate chondrocytes physiologically to enhance their metabolic activity and the formation of cartilage extracellular matrix. In conclusion, regarding the formation of cartilage matrix biochemical and histological analysis revealed a marginal effect of PST on articular articular chondrocytes. The present results of this study show a promising approach to evaluate the effects of PST giving rise to mitigation of arthritic diseases. For further analysis of PST effects on chondrocytes, the expression profiles of distinct subsets of extracellular matrix genes (type I, II and type X collagen, aggrecan and link protein) are under investigation to achieve a more profound knowledge of molecular events as a consequence of PST treatment.